Aljabar Linear Contoh

Tentukan Bentuk Eselon Baris yang Dikurangi [[0,1,5,-4],[1,4,3,-2],[2,7,1,-2]]
[015-4143-2271-2]015414322712
Langkah 1
Swap R2R2 with R1R1 to put a nonzero entry at 1,11,1.
[143-2015-4271-2]143201542712
Langkah 2
Perform the row operation R3=R3-2R1R3=R32R1 to make the entry at 3,13,1 a 00.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Perform the row operation R3=R3-2R1R3=R32R1 to make the entry at 3,13,1 a 00.
[143-2015-42-217-241-23-2-2-2]14320154221724123222
Langkah 2.2
Sederhanakan R3R3.
[143-2015-40-1-52]143201540152
[143-2015-40-1-52]143201540152
Langkah 3
Perform the row operation R3=R3+R2R3=R3+R2 to make the entry at 3,23,2 a 00.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Perform the row operation R3=R3+R2R3=R3+R2 to make the entry at 3,23,2 a 00.
[143-2015-40+0-1+11-5+152-4]143201540+01+115+1524
Langkah 3.2
Sederhanakan R3R3.
[143-2015-4000-2]143201540002
[143-2015-4000-2]
Langkah 4
Multiply each element of R3 by -12 to make the entry at 3,4 a 1.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Multiply each element of R3 by -12 to make the entry at 3,4 a 1.
[143-2015-4-120-120-120-12-2]
Langkah 4.2
Sederhanakan R3.
[143-2015-40001]
[143-2015-40001]
Langkah 5
Perform the row operation R2=R2+4R3 to make the entry at 2,4 a 0.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Perform the row operation R2=R2+4R3 to make the entry at 2,4 a 0.
[143-20+401+405+40-4+410001]
Langkah 5.2
Sederhanakan R2.
[143-201500001]
[143-201500001]
Langkah 6
Perform the row operation R1=R1+2R3 to make the entry at 1,4 a 0.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Perform the row operation R1=R1+2R3 to make the entry at 1,4 a 0.
[1+204+203+20-2+2101500001]
Langkah 6.2
Sederhanakan R1.
[143001500001]
[143001500001]
Langkah 7
Perform the row operation R1=R1-4R2 to make the entry at 1,2 a 0.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Perform the row operation R1=R1-4R2 to make the entry at 1,2 a 0.
[1-404-413-450-4001500001]
Langkah 7.2
Sederhanakan R1.
[10-17001500001]
[10-17001500001]
Enter a problem...
 [x2  12  π  xdx ]